A note on computing involution centralizers

نویسندگان

  • John Ballantyne
  • Peter Rowley
چکیده

For a black box group G and t an involution of G we describe a computational procedure which produces elements of CG(t) by making use of the local fusion graph F(G, X), where X is the G-conjugacy class of t.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On centralizers of prime rings with involution

‎Let $R$ be a ring with involution $*$‎. ‎An additive mapping $T:Rto R$ is called a left(respectively right) centralizer if $T(xy)=T(x)y$ (respectively $T(xy)=xT(y)$) for all $x,yin R$‎. ‎The purpose of this paper is to examine the commutativity of prime rings with involution satisfying certain identities involving left centralizers.

متن کامل

Finite groups have even more centralizers

For a finite group $G$‎, ‎let $Cent(G)$ denote the set of centralizers of single elements of $G$‎. ‎In this note we prove that if $|G|leq frac{3}{2}|Cent(G)|$ and $G$ is 2-nilpotent‎, ‎then $Gcong S_3‎, ‎D_{10}$ or $S_3times S_3$‎. ‎This result gives a partial and positive answer to a conjecture raised by A‎. ‎R‎. ‎Ashrafi [On finite groups with a given number of centralizers‎, ‎Algebra‎ ‎Collo...

متن کامل

A Note on Jordan Left ∗-Centralizers in Rings with Involution

Let R be a ring with involution. An additive mapping T : R → R is called a left ∗-centralizer (resp. Jordan left ∗-centralizer) if T (xy) = T (x)y∗ (resp. T (x2) = T (x)x∗) holds for all x, y ∈ R, and a reverse left ∗-centralizer if T (xy) = T (y)x∗ holds for all x, y ∈ R. The purpose of this paper is to solve some functional equations involving Jordan left ∗-centralizers on some appropriate su...

متن کامل

On solubility of groups with finitely many centralizers

For any group G, let C(G) denote the set of centralizers of G.We say that a group G has n centralizers (G is a Cn-group) if |C(G)| = n.In this note, we prove that every finite Cn-group with n ≤ 21 is soluble andthis estimate is sharp. Moreover, we prove that every finite Cn-group with|G| < 30n+1519 is non-nilpotent soluble. This result gives a partial answer to aconjecture raised by A. Ashrafi in ...

متن کامل

Involution centralizers in matrix group algorithms

Introduction In this talk all groups are finite (by definition), and all simple groups are non-abelian. Let us first define our terms: an involution in a group G is an element t of order 2, i.e. t = 1 and t 6= 1. Its centralizer CG(t) is the subgroup of elements which commute with it, so CG(t) = {g ∈ G | tg = gt}. It has long been accepted in abstract group theory that the way to study simple g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Symb. Comput.

دوره 54  شماره 

صفحات  -

تاریخ انتشار 2013